0%

机器学习部分代码开发实录

主测界面代码如下,全研究代码请联系2019级邓松涛同学或陈睿航同学获取。两位同学分别负责并完善了该项目的软硬件贯通设计。

import argparse

from utils.datasets import *
from utils.utils import *

def detect(save_img=False):
out, source, weights, view_img, save_txt, imgsz =
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source == ‘0’ or source.startswith(‘rtsp’) or source.startswith(‘http’) or source.endswith(‘.txt’)

# Initialize
device = torch_utils.select_device(opt.device)
if os.path.exists(out):
    shutil.rmtree(out)  # delete output folder
os.makedirs(out)  # make new output folder
half = device.type != 'cpu'  # half precision only supported on CUDA

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
# torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
# model.fuse()
model.to(device).eval()
if half:
    model.half()  # to FP16

# Second-stage classifier
classify = False
if classify:
    modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initialize
    modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
    modelc.to(device).eval()

# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
    view_img = True
    torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
    dataset = LoadStreams(source, img_size=imgsz)
else:
    save_img = True
    dataset = LoadImages(source, img_size=imgsz)

# Get names and colors
names = model.names if hasattr(model, 'names') else model.modules.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]

# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
for path, img, im0s, vid_cap in dataset:
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    # Inference
    t1 = torch_utils.time_synchronized()
    pred = model(img, augment=opt.augment)[0]

    # Apply NMS
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
                               fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)
    t2 = torch_utils.time_synchronized()

    # Apply Classifier
    if classify:
        pred = apply_classifier(pred, modelc, img, im0s)

    # List to store bounding coordinates of people
    people_coords = []

    # Process detections
    for i, det in enumerate(pred):  # detections per image
        if webcam:  # batch_size >= 1
            p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
        else:
            p, s, im0 = path, '', im0s

        save_path = str(Path(out) / Path(p).name)
        s += '%gx%g ' % img.shape[2:]  # print string
        gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwh
        if det is not None and len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

            # Print results
            for c in det[:, -1].unique():
                n = (det[:, -1] == c).sum()  # detections per class
                s += '%g %ss, ' % (n, names[int(c)])  # add to string

            # Write results
            for *xyxy, conf, cls in det:
                if save_txt:  # Write to file
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
                        file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format

                if save_img or view_img:  # Add bbox to image
                    label = '%s %.2f' % (names[int(cls)], conf)
                    if label is not None:
                        if (label.split())[0] == 'person':
                            people_coords.append(xyxy)
                            # plot_one_box(xyxy, im0, line_thickness=3)
                            plot_dots_on_people(xyxy, im0)

        # Plot lines connecting people
        distancing(people_coords, im0, dist_thres_lim=(200,250))

        # Print time (inference + NMS)
        print('%sDone. (%.3fs)' % (s, t2 - t1))

        # Stream results
        if view_img:
            cv2.imshow(p, im0)
            if cv2.waitKey(1) == ord('q'):  # q to quit
                raise StopIteration

        # Save results (image with detections)
        if save_img:
            if dataset.mode == 'images':
                cv2.imwrite(save_path, im0)
            else:
                if vid_path != save_path:  # new video
                    vid_path = save_path
                    if isinstance(vid_writer, cv2.VideoWriter):
                        vid_writer.release()  # release previous video writer

                    fps = vid_cap.get(cv2.CAP_PROP_FPS)
                    w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                    h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                vid_writer.write(im0)

if save_txt or save_img:
    print('Results saved to %s' % os.getcwd() + os.sep + out)
    if platform == 'darwin':  # MacOS
        os.system('open ' + save_path)

print('Done. (%.3fs)' % (time.time() - t0))

if name == ‘main‘:
parser = argparse.ArgumentParser()
parser.add_argument(‘–weights’, type=str, default=’weights/yolov5s.pt’, help=’model.pt path’)
parser.add_argument(‘–source’, type=str, default=’inference/images’, help=’source’) # file/folder, 0 for webcam
parser.add_argument(‘–output’, type=str, default=’inference/output’, help=’output folder’) # output folder
parser.add_argument(‘–img-size’, type=int, default=640, help=’inference size (pixels)’)
parser.add_argument(‘–conf-thres’, type=float, default=0.4, help=’object confidence threshold’)
parser.add_argument(‘–iou-thres’, type=float, default=0.5, help=’IOU threshold for NMS’)
parser.add_argument(‘–fourcc’, type=str, default=’mp4v’, help=’output video codec (verify ffmpeg support)’)
parser.add_argument(‘–device’, default=’’, help=’cuda device, i.e. 0 or 0,1,2,3 or cpu’)
parser.add_argument(‘–view-img’, action=’store_true’, help=’display results’)
parser.add_argument(‘–save-txt’, action=’store_true’, help=’save results to *.txt’)
parser.add_argument(‘–classes’, nargs=’+’, type=int, help=’filter by class’)
parser.add_argument(‘–agnostic-nms’, action=’store_true’, help=’class-agnostic NMS’)
parser.add_argument(‘–augment’, action=’store_true’, help=’augmented inference’)
opt = parser.parse_args()
opt.img_size = check_img_size(opt.img_size)
print(opt)

with torch.no_grad():
    detect()